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Electron population analyses of several molecular one-electron density functions have been studied by least- 
squares projection methods into several atomic-density basis functions. All studies have been restricted to 
spherically symmetrical functions, which have been fitted to the atomic-density functions for the ground-state 
atoms hydrogen through neon. It is found that when the atom-density basis functions are split into inner (K 
shell) and outer (L shell) parts, then the atomic charges reflect polarity of the molecule reasonably well and, 
moreover, are relatively independent of the orbital bases used in spanning the molecular wave function. The 
standard density basis sets given here can be used for a similar electron population analysis of accurate X-ray 
diffraction data. 

1. Introduction 

The concept of a local electronic charge on an atom in 
a molecule has been qualitatively valuable in corre- 
lating and interpreting a wide range of molecular 
properties. A unique, well defined procedure for parti- 
tioning a molecular electron density into atomic com- 
ponents has been proposed (Srebrenik & Bader, 1975). 
However, it has proved difficult to turn these virial 
fragments into simple X-ray scattering factors. Such a 
partition, if it could be achieved in a practical manner, 
would permit many qualitative discussions of electron 
distribution to be recast in more precise form. 

In earlier work, atomic-density basis functions were 
used for electron population analysis of X-ray diffrac- 
tion data (Stewart, 1970a). The atom-density functions 
consisted of a core part (tpl~) 2, and an L shell 
constructed from a standard STO (Hehre, Stewart & 
Pople, 1969). The core was frozen at two electrons and 
the L-shell functions were then used to analyze X-ray 
structure factors by least-squares projection methods. 
Reasonable atomic charges for the molecular crystals 
of s-triazine, cyanuric acid and uracil were found. The 
projection of F o (or IS) into atomic density functions as 
a basis for determining the atomic charge has been 
employed by Coppens (1975) for molecular crystals 
and by Kurki-Suonio & Salmo (1972) for ionic 
crystals. In this case finite spheres with appropriate 
atomic radii are chosen as the atomic functions. It is 
desirable, however, to develop a standard set of atomic- 
density basis functions that can be easily used for 
atomic population analysis of molecular density func- 
tions derived from electronic wave functions as well as 
for a comparable analysis of X-ray diffraction data. 

A density-partitioning technique frequently em- 
ployed by theoretical chemists is Mulliken's (1955) 
population analysis. This starts with a molecular- 
orbital wave function, each orbital being expanded as a 
linear combination of basis functions centered at the 
atomic nuclei. By appropriate distribution of the total 
electron population among the basic functions, an 
atomic partition is achieved. The principal drawback of 
this method is that the populations depend on the 
details of the basis set used as well as on the density 
function that is to be represented. Two different basis 
sets, which lead to similar total electron density 
functions, may give quite different atomic electron 
populations by Mulliken analysis. Clearly, if the 
electron-density function is obtained in some other 
manner such as from X-ray diffraction data, then an 
approach in terms of a particular orbital basis set is 
quite inappropriate. 

An alternative approach, which avoids these difficul- 
ties of Mulliken population analysis, is to represent the 
electron density p(r) approximately by an expansion in 
terms of a separate basis set designed primarily for this 
purpose. Thus, if J2j(r) ( j  = 1, 2. . .)  constitutes such a 
density basis set, an approximate expansion 

p'(r) = Y pj f2j(r) (1) 
J 

can be obtained by least-squares fitting to p(r), thereby 
leading to a set of populations pj. The use of different 
orbital basis sets leading to the same density p(r)would 
thus give the same population analysis in these terms. 

Perhaps the simplest density basis expansion (1) is 
one in which there is a single spherically symmetric 
function for each atom A in the molecule, 
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R A being the position vector of the A nucleus. Further, 
.QA(r) may be chosen as the spherically averaged 
electron density for the isolated atom A. It may be 
noted that an electron density function such as (2) is 
implicitly assumed in most structure determinations by 
X-ray crystallography. The populations PA are nor- 
mally taken to be equal to the number of electrons in 
the neutral atoms and the R A then adjusted to optimize 
the agreement between structure factors implied by (2) 
and those found experimentally. 

If the parameters PA in (2) are adjusted by least- 
squares fitting to the exact density p(r), we have a well- 
defined set of total atomic populations. Even if p(r) is 
not exact, such populations should converge to limiting 
values as the errors are removed. The PA obtained in 
this way may be described as total atomic populations 
using a spherical-atom-density basis set. 

Populations obtained directly from (2) will be subject 
to some drawbacks. One limitation is that the optimum 
PA will not necessarily add up to the number n of 
electrons in the molecule. An alternative procedure is to 
introduce an electron-number constraint 

~,p j=n  (3) 
J 

and vary pj in (1) subject to this restriction. 
Another feature that is not treated adequately by the 

approximate density function (2) is the tendency of 
atoms to expand or contract in a molecular environ- 
ment. This can be incorporated into the treatment by 
generalizing (2) to 

a t o m s  

p'(r) = Z PA S~ $'2A(SAIr-- RAI ) (4) 
A 

where s a is a scale factor for atom A. If the s A 
parameters are also varied in the least-squares fitting 
procedure, the density population analysis may be 
described as scaled. The scale factors s A may or may 
not be associated with the electron-number constraint 
(3). 

A further difficulty with population analysis based 
on (2) or (4) is that all parts of each atom are treated in 
a uniform manner. For example, a low population PA 
for a particular atom in (2) implies that electrons are 
removed in similar proportions from inner shells and 
from the valence shell. In reality, most of the 
population variation from molecule to molecule takes 
place in the valence shell. To incorporate such addi- 
tional flexibility into p'(r), the density basis set must be 
expanded to more than one function per atom. The 
simplest extension would be to use two spherical 
functions, one for the inner shells and one for the 
valence shell. 

The principal objective of this paper is to develop 
and test techniques for carrying out these various types 
of atomic population analysis. This will be carried out 
by developing Gaussian representations for spherical- 
atomic-density basis functions I2j(r). Subsequent least- 

squares variation of populations and scale factors can 
then be performed easily if the electron density p(r) is 
available in Gaussian form. Since this is part of the 
normal output of a molecular-orbital wave-function 
calculation with a Gaussian orbital basis set, the 
technique is widely applicable. 

In the next section, the general theory of the least- 
squares fitting with Gaussian density basis functions is 
outlined. This is followed by determination of Gaussian 
representations for the spherical atom densities .QA(r) 
which can then be used to determine the total 
populations defined by (2) or (4). In the later sections 
of the paper, corresponding methods are developed 
which allow for separate density basis functions for 
inner and valence shells of atoms beyond helium. 

2. General theory of spherical Gaussian fits of electron 
density 

In this section we consider the general problem of 
fitting a given density function p(r) by a linear 
combination of spherical Gaussian functions using a 
least-squares criterion. Suppose that the density is 
represented approximately by an expansion (1)where 
pj are population parameters to be determined and the 
density basis functions .Qj are contracted Gaussian 
functions, 

.Qj(r) = ~djkgk(Yk, r-- Rj), (5) 
k 

g ( 7 , r -  R)---- (),/n) a/2 exp[y(r-- R)2]. (6) 

All primitive Gaussian functions gk constituting one ~j  
are taken to be at the same center Rj. The basis 
functions will be normalized so that 

~ d j k =  1; f ~ j ( r ) d r =  1. (7) 
k 

We determine population parameters pj by mini- 
mization of 

t = f (p - p,)2 dr (8) 
o r  

e' = e -- f p2 dr = - 2  f pp' dr + f p,2 dr. (9) 

Substitution of (1) leads to 

e' = - 2  ~, wjpj + Y, Vjkpjpk (10) 
j jk  

where 

wj = f p.f2j dr = ~ djk f pg, dr (11) 
k 

and 

Vjk = f"Oj'Qk dr=  ~. djtdjm fglgm dr 
lm 

= Y d j , ' t j m  ' 
t,,, n(~'! + ~'z) 

× exp[ )ll~]l~m+ 'm (RJ-- R*)2] " (12) 
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If we write p, w and V for the vectors and matrices pj, 
wj and Vjk, unconstrained minimization of (10) with 
respect to p leads to the solution 

p = V -1  w .  ( 1 3 )  

This solution is unique, provided that V is non-singular. 
As indicated in the Introduction, it is often preferable 

to minimize e' subject to the electron-number 
constraint 

fp'  d r =  ~ p j =  n (14) 
i 

where n is the number of electrons. Using the method of 
Lagrange multipliers, define 

e " = e - 2 Z p ?  (15) 
, j 

Then the conditions ~e"/~pj = 0 together with (14) lead 
to the constrained solution 

p = V -1  w + ( i  t V - l  i) -1  (n - -  i t ~f--1 W) V -1 i. (16) 

Here i and i t are column and row vectors with unit 
elements. 

The above analysis is general and makes no 
reference to the actual form of the density function p(r). 
In molecular-orbital calculations, p(r) is frequently 
obtained as a quadratic expression 

p(r)= Z e,~ tp, tp, (17) 
pzv 

where tp,, ~, are orbital basis functions and Pu, is the 
one-electron density matrix. Equation (11) then 
becomes 

wj = Z djk(YtJn)S/2Zeu,,ftPu (0~ expt--yk(r -- Rj)21 dr. 

k ~ ( 1 8 )  

If the orbital basis functions ~, are themselves of 
Gaussian type, the integrals in (18)can be evaluated by 
elementary methods. 

3.  O p t i m i z e d  G a u s s i a n  f i ts  t o  s p h e r i c a l  a t o m i c  

d e n s i t i e s  

In this section, we attempt to determine the best fits of a 
spherically averaged atomic density p(r) by a linear 
combination of M uncontracted Gaussian basis func- 
tions ,Qj centered at the nuclear position (M = l, 2, 
3,...). Thus, instead of (5) we use 

Oj=gj() , j , r)  ( j =  1 .. . .  M) (19) 

the nucleus being placed at the coordinate origin. The 
M Gaussian exponents yj are then to be determined. 

For a given set of yj, the individual populations pj 
may be determined either directly (13) or with the total- 
electron constraint (16). In either case, the result is a 
residual e(yfl. This can then be minimized with respect 
to all the ),j by an appropriate search procedure. In 

practice, the optimum yj can be found by minimization 
of e' (9), thereby avoiding computation of f p2 dr. For 
the H atom, we have obtained results with and without 
the total population constraint, using differentiation 
with respect to ~,g to locate the optimum fit. For other 
atoms, only the constrained solution has been con- 
sidered and minimization of yj has been carried out by a 
version of the Fletcher & Powell (1963) search 
procedure. The results for H were then used as a 
suitable bench mark to test our search procedure for 
other atoms. 

H atom 

For the ground state of the H atom, 

n(r) = zr-' exp (--2r) (20) 

and the precise solution of the problem is possible. 
Equation (8) takes the form 

e :  7 [n'--1 exp( - -2r ) - -Z  pj(),.y/n) 3/2 
0 j 

x exp(--yjr  2) 4zcr2dr. (21) 

The extremum conditions 

ige/tgpj= ae/ayj=O,  j =  1. . .M (22) 
lead to 

G2(¼y,) = 2 Z p j  y]/2(yj + 7,)-,/2 (23) 
J 

G4(¼Yk) = 12 ZPj  7~/2(Yj + )'k) -'/2 (24) 
J 

oo 

Gn(x) = f t n exp ( - t  - x t  2) dt. (25) 
0 

Evaluation of the functions Gn(x ) has been discussed 
previously (Stewart, 1969). Solution of (23) and (24) 
for (Pj, Tj) then gives the unconstrained solution. 
Results up to M -- 6 are listed in Table 1. 

The unconstrained solutions to the H atom density 
have a simple relation to the corresponding solutions 
for small Gaussian fits to a ls orbital. It can be shown 
that unconstrained ),j and pj in Table 1 are easily deter- 
mined from % and dj in Table 1 of Stewart (1970b) by 
the equations, 

yj = 4aj (26) 

p; = V/2 dma~ 4 G2(a m) a] -3`4 d s (27) 
1 

where G2(X ) is given by (25). 
If the variation is constrained so that the sum of 

populations pj is unity, the function e" .(15) is used and 
the appropriate extremum conditions are 

ae"/apj = ,~; ae"/a  b = 0, (28) 
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Table 1. Density basis functions for hydrogen [(expansions for n "-1 exp(-2r)]  

Unconstrained Constrained 
M ?j pj 7j Pj 
1 1.083799 7.291582 (-1) 7.970093 (-1) 1.000000 
2 3.407275 1.355567 (-1) 2.915943 1.764218 (-1) 

6.064932 (-1) 7.807701 (-1) 5.130127 (-1) 8.235782 (-1) 
3 8.910642 2.368420 (-2) 8.017498 2.889780 (-2) 

1.623085 2.946506 (-1) 1.458517 3.410172 (-1) 
4.392700 (-1) 6.522254 (-1) 3.919576 (-1) 6.300850 (-1) 

4 2.086738 (1) 4.601400 (-3) 1.926613 (1) 5.376900 (-3) 
3.818473 7.538720 (-2) 3.524518 8.660460 (-2) 
1.060814 4.035320 (-1) 9.780867(-1) 4.390733 (-1) 
3.520745 (-1) 5.050739 (-1) 3.230799(-1) 4.689452 (-1) 

5 4.522255 (1) 1.005000 (-3) 4.241512 (1) 1.140900 (-3) 
8.286913 1.840230 (-2) 7.771840 2.075760 (-2) 
2.314594 1.399764 (-1) 2.170171 1.547741 (-1) 
7.902898 (-I) 4.557578 (-1) 7.403047 (-1) 4.776157 (-1) 
2.978109 (-1) 3.801028 (-1) 2.780168 (-1) 3.457117 (-1) 

6 9.241213 (1) 2.434000 (-4) 8.759984 (1) 2.707000 (-4) 
1.694366 (1) 4.678900 (-3) 1.606086 (1) 5.190700 (-3) 
4.740226 4.153020 (-2) 4.492888 4.570000 (-2) 
1.628396 2.034963 (-1) 1.543057 2.191485 (-1) 
6-323537 (-1) 4.649442 (-1) 5.987529 (-1) 4.752435 (-1) 
2.604382 (-1) 2.830051 (-1) 2.459547 (--1)  2.544466 (-1) 

leading to 

G2(¼),k) = 2 [~jpj,3/2(,j + , k ) - 3 / 2  ~3/2)r~-3/2,~,] 

G4(¼7k)= 12 [~ pj ,y2(~j + ,k)-5/2 7~3/2 ~r~5/2 2] 

~ p i =  1. (29) 
J 

These equations have also been solved up to M = 6 for 
(Pj, 7), the results also being listed in Table 1. 

Table 2. Exponents for atomic d functions 

Atom ~a 

He 1.971 
Li 4.560 
Be 0.276 
B 0.412 
C 0.622 
N 0.922 
O 1.298 
F 1-752 
Ne 2.305 

Atoms He to Ne 

For heavier atoms, we have fitted spherical Gaussian 
density expansions to atomic electron density functions 
which make some allowance for electron correlation. 
Atomic wave functions were first obtained by the 
unrestricted Hartree-Fock procedure (Pople & Nesbet, 
1954), i.e. the energy-optimized single determinant in 
which a and fl electrons occupy different orbitals. The 
correlation correction of the electron density is then 
introduced by the M~ller & Plesset (1934) pertur- 
bation scheme, terminated at second order (Seeger & 
Pople, 1975). For the atoms B, C, O and F, with p-type 
ground states, these atomic densities will not be 
spherically symmetric, but they can still be least- 
squares fitted by spherical expansions. 

The atomic-orbital basis sets are based on those 
developed by van Duijneveldt (1971). For helium, we 

use his 10s Gaussian expansion. To take account of 
correlation, it is necessary to expand the basis set by 
including functions with higher angular quantum 
numbers. The full basis used is (lOs,8p, ld). The p 
functions are chosen with exponents equal to those of 
the outermost eight s functions. The single set of d 
functions has a Gaussian exponent a a = 1.971, 
obtained by energy optimization (Binkley & Pople, 
1975). For Li and Be, we use (1 ls,7p, ld) orbital basis 
sets, constructed in the same manner as for He. The p 
exponents coincide with the outer seven s exponents 
and the d exponent is determined by optimization of the 
UMP2 (unrestricted Moller-Plesset, second-order) 
energy (Binkley & Pople, 1975) (Table 2). For B to Ne, 
the ( l ls ,7p)  set of van Duijneveldt (1971) is again 
supplemented by a single set of d functions obtained in 
the same way. 
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The atomic densities at the UMP2 level were fitted to 
the spherical expansions with total electron number 
constraint and with various values of M.~- 

4. Population analysis with one density basis function 
per atom 

The atomic density representations obtained in the 
previous section can now be used to carry out 
molecular population analyses as indicated in the Intro- 
duction. One density basis function J2 A is used for each 
atom, this being the contracted (M = 5) Gaussian 
function discussed in §3. In all cases we use the 
electron-number constraint within the atom and in the 
molecular analysis. 

The population analysis was applied to density 
functions p(r) obtained from a molecular-orbital cal- 
culation using the 6-31G* orbital basis set (Hariharan 
& Pople, 1973). This was first with the unrestricted 
Hartree-Fock (UHF) procedure (Pople & Nesbet, 
1954) and then with the correlated density function 
obtained by applying the second-order Moller-Plesset 
correction (UMP2) (Seeger & Pople, 1975). The 
geometries used were those which minimized the corre- 
sponding energies. 

Results for simple first-row hydrides are shown in 
Table 3, both with and without rescaling. In all cases, 
the results indicate very non-polar structures, the 
atomic populations being close to those of the neutral 
atoms. The optimized scaling factors for H are 
considerably greater than unity for some molecules, but 
the corresponding populations remain close to unity. 
These results are undoubtedly caused by the rigidity of 

~f A list of the complete results for M = 5 has been deposited with 
the British Library Lending Division as Supplementary Publication 
No. SUP 33391 (4 pp.). Copies may be obtained through The 
Executive Secretary, International Union of Crystallography, 5 
Abbey Square, Chester CH 1 2HU, England. 

Table 3. Population analysis with one density basis 
function per atom (based on UMP2/6-31G* molecular 

orbital calculations) 

No rescaling Rescaled 
Molecule PA PH sA PA an PH 

LiH 2.972 1.028 1.019 2.946 1.151 1.054 
Bell 3.950 1-050 1.001 3.962 1.294 1.038 
BH 4.976 1.024 1-004 4-977 1.402 1.023 
CH 5.975 1.025 0.999 5-992 1.401 1.008 
NH 6.965 1.035 0.996 6.995 1.327 1.005 
OH 7.960 1.040 0.995 7.995 1.184 1-005 
FH 8.962 1.038 0.994 9.000 1.018 1.000 
Bell 2 3.950 1.025 1.001 3.963 1.316 1-019 
BH 2 4.944 1.028 0.994 4.982 1.364 1.009 
CH 2 5.941 1.030 0.988 6.005 1.318 0.997 
NH 2 6.937 1.032 0.988 7.004 1.175 0.998 
OH 2 7-951 1.025 0.991 8.008 1.141 0.996 

the fit to the inner-shell region of the non-hydrogen 
atom and indicates that a satisfactory population 
analysis cannot be achieved unless the inner-shell 
electron density is separated from the valence part. This 
necessarily requires more than one density basis 
function per atom. 

5. Separation of inner and valence shell atomic 
densities 

In this section we discuss the specification of more than 
one density basis function per atom (Li to Ne) in order 

Table 4. Shell density basis functions for Li-Ne 

Shell Yi PJ 

Lithium K 6-020625 (1) 6- 347853 ( -2)  
1.072344 (1) 6.835616 ( -1)  
2.655235 1-252959 

L 7-232958 ( -1)  -1 .165096 (--1) 
1.049073 (--1) 1.116510 

Beryllium K 1. 120053 6.197620 ( -2)  
2.006076 (1) 6.828745 ( -1)  
5.080061 1.255149 

L 8.525480 1.524275 (--1) 
3.634112 -2 .793610 (--1) 
2.131764 (--1) 2.126933 

Boron K 1.793437 (2) 6.132441 ( -2)  
3.222402 (1) 6.838936 ( -1)  
8.256866 1.254782 

L 2.023289 (1) 8.467290 ( -2)  
4.839469 -2 .233350 ( -1)  
3.630471 ( -1)  3.138662 

Carbon K 2-623041 (2) 6.090121 (--2) 
4.722486 (1) 6.853655 (--1) 
1.217508 (1) 1.253733 

L 3.660348 (1) 6.778450 ( -2)  
7.001496 -1-978088 (--1) 
5.612485 ( -1)  4.130024 

Nitrogen K 3.608614 (2) 6.068809 (--2) 
6.505921 (1) 6-856238 ( -1)  
1-687057 (1) 1.253688 

L 1.329521 (2) 2.081204 (--2) 
7-952781 ( -1)  4.574772 
1.391511 ( -1)  4.044154 (--1) 

Oxygen K 4.743946 (2) 6.062425 (--2) 
8.561050 (1) 6.870775 (--1) 
2.226712 (1) 1.252298 

L 1.790239 (2) 2-136481 (--2) 
1.139033 5-145554 
2.476962 (--1) 8.330810 (--1) 

Fluorine K 6.031480 (2) 6.061261 (--2) 
1.089292 (2) 6.884314 (--1) 
2.839467 (1) 1.250956 " 

L 2.352769 (2) 2.110218 ( -2)  
1.560193 5.682882 
3.767315 ( -1)  1.296016 

Neon K 7.470428 (2) 6.063671 (--2) 
1.350097 (2) 6-896739 ( - I )  
3.525300 (1) 1-249689 

L 3.031421 (2) 2.033345 (--2) 
2.060714 6.197815 
5.268264 ( -1)  1.781851 
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to incorporate more flexibility into the atomic- 
population description. One way to do this is to take 
the density fits discussed in § 3 and split them into inner 
and outer parts. For example, one might take the five- 
Gaussian fits of the table and use three Gaussian 
functions for an inner basis function and the outer two 
for the valence density. This does not, of course, corre- 
spond to a correct division of the atomic electrons into 
K and L shells since the sum of the lowest three 
populations for any atom is not equal to 2.0 so that it 
does not represent the inner shell precisely. Since it is 
useful to retain the description of two electrons in the K 
shell, we have obtained alternative basis sets which 
handle the two shells separately. The procedure 
consists of the following steps. 

(1) An inner-shell density, 

PK = 2~,,% 

is constructed for each atom using a restricted 
Hartree-Fock (RHF) procedure and the same orbital 
basis described in § 3. 

(2) Px is fitted by a set of three Gaussian functions 
using the procedure outlined in §2. This defines a 
contracted K-shell density basis function O K. 

(3) The previously obtained unrestricted Hartree- 
Fock PUHF are modified to give valence densities & by 

PL = P u H F  - -  2J'2K" 

(4) The valence density & is then fitted by a further 
set of three Gaussian functions to give a contracted L- 
shell density basis function J2 L. In the case of Li only 
two Gaussian functions were used for this fit since two 
of the exponents were found to collapse to a common 
value when optimization of three was attempted. 

The resulting density basis functions are listed in 
Table 4. It should be noted that each is normalized to 
the number of electrons in the shell in the atomic 
ground state. 

6. Population analysis with separated valence density 
basis 

The atomic density basis functions obtained in the 
preceding section can be used to investigate the charge 
distributions in a number of simple molecules. Two 
density functions are used for each non-hydrogen 
atom; the single function for H is that with M---- 5 from 
Table 1 (with electron-number constraint). Average 
molecular scaling factors were first determined by 
population analysis of the hydride series, LiH, Bell2, 
BH 3, CH 4, NH 3, H20 and HF. These molecular p(r) 
were obtained from 6-31G* basis sets. For the heavy 
atoms, scaling was only applied to &. For H an 
average scale factor, (1.5) ~/2, was found for the series B 
to F. (This value is not appropriate for LiH or Bell2. ) 
Scaling factors, listed as the square of s A [see equation 

Table 5. A verage molecular scaling factors 

s~ 1equation (4)1 
Li 1-44 
Be 1-25 
B 1.26 
C 1.08 
N 0.91 
O 0.92 
F 0.95 
H 1.5 (for B to F only) 

(4)], are given in Table 5. These factors were then used 
to scale the L-shell density functions in Table 4 and H 
in Table 1 (M = 5). 

The population analysis with the scaled density 
functions A, is applied to the Hart ree-Fock densities 

MULLIKEN MULLIKEN STANDARD BASIS STANDARD BASIS 
STO-3G 6-31G M STO-3G 6-31G* 

H~ -254 H ~ - 5 7 8  H~ .111 H~-33 
H - - C - - H  +63 H - - C - - H  +:$5 H - - C - - H  -30 H - - C - - H  +8 

H j H j H j H ~ 

+57 +158 -44 -8 
H ~  _17t~H H ~  _4T3~./H H ~  +13~.H H + H 

H-----: C - - C ~ H  H ' ~ :  C - - C ~ H  H ' ~ :  C - - C  - : ' ~  H H " ~ C - - ~ 2 4 ~ "  'H 

H j ~H h j ~H H / ~H H / ~H 

+63 +t78 -25 -3 
H ~  _Iz6~H H - - - 3 5 7  H H..~/ U+50 H H ~ C ~ C ~ 6  ~ + 6  H --c=cz,.. ~c- -c  ~?~" . ~  H . ~  ~ H  / C = C  ... 

H H H / ~ H  

-t08 +108 -288 +288 -47 +47 -30 +30 
H - - C ~ C - - - H  H - ~ C ~  - -  H - - C  C H ~ - -  C H ~ .  - -  H - - C  C H 

;53 Gs~ 

+57 - -  - - C  H -44 C - - C ~ H  
H " "~C  _'~175 ~ H  H " ~ C  +~H 8 ~ H  

Fig. 1. Net charges (me) for hydrocarbons. 

MULLIKEN MULLIKEN STANDARD BASIS STANDARD BASIS 
STO-3G 6-31G ~ STO-3G 6 -31G*  

÷|60 +331 4-197 + 219 
H ~  H ~  H . ~  H ~  

H - - N -  480 H - -  N-992 H - - N - 5 9 2  H - - N  -658 

H / H / H / H / 

H +67 H 1~8 

1.56 H-35  H H+t48 

+67 -22 
H H 

/ , ,  
+156 +124 

+66 -28 
+66 H H -28  H H 

÷149 +9 +316 +65 +136 +260 +140 +295 
- -  ~ H C N H - - C ~ N I 5 8 -  H - - C ~ N  H C N - -  

-38t -396 -435 

Fig. 2. Net charges (me) for nitrogen compounds. 
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p(r) obtained from molecular-orbital calculations using 
the minimal STO-3G basis set and, for a smaller set of 
molecules, the polarized 6-31G* set. The populations 
obtained by our technique may be compared for the 
two basis sets, thereby giving some indication of the 
changes of electron distribution that occur when the 
orbital basis flexibility is increased. 

The method has been applied to the set of molecules 
illustrated in Figs. 1-4, which give the results. All 
geometries are chosen according to a standard model 
described previously by Pople & Gordon (1967). The 
first two columns in each figure are based on Mulliken 
gross populations for the two orbital basis sets. The 
third and fourth columns give results with the standard 
density basis specified above. 

The following features are apparent from the results. 
(a) The separation of the core and valence densities on 
the non-hydrogen atoms leads to more realistic charge 
distributions. This confirms the suggestion that the very 
non-polar electron distributions of Table 3 are due to 

MULL]KEN MULLIKEN STANDARD B A S I S  STANDARD BASIS 
STO-3G 6-51G N STO-3G 6-51G N 

-572 -866 -595 -6t4 
o~ /o o o 

H / . +,86 H ~ H  +233 H / ~ H  .296 . /  ~ .  +3or 

-3O8 -607 
. . . .  \ o 

~173 ~ 2  -567 

-258 -561 

~ ' O - - H  +232 ~ ' O - - H  +298 
-307 -562 

+65 +155 +l 

O : C  +~e 04-~--c O = C  +46r -,86 ~H 94~-Jc - 5 .  ~ H 

Fig. 3. Net charges (me) for oxygen compounds. 

MULLIKEN MULLIKEN ST~.NDARD BASIS STANDARD BASIS 
STO-3G 6 -31G ~ STO-3G 6-31G ~ 

-209 +209 -5 t7  *'517 -365 +565 - 3 9 2 + 3 9 2  
F ~ l ' i  F - - H  F - - H  F - - H  

+6,5 - t 8  

H ~ - 4 2  H ~ + 4 4  O 
H - - c - - F - I S 2  . - - C - - F - 3 e 4  

H ~ H ~ 

+66 -12 
H_ +169 . F - t 5 f  H_ +750 F-363 c% . r H / c ~ F  

-148 -345 

F ~ +376 F ~ +1041 
F - - C - - H  +69 F - - C - - H - 5  

F / F / 

+ t t5  - t30  +90 -89 
H - - C ~ C - - F - 7 7  H - - C ~ C - - F - 2 9 7  

+92 +298 

Fig. 4. Net charges (me) for fluorine compounds. 

including inner-shell electrons in the variable atom 
population. If the core density is treated separately, 
much larger variations are found in valence-electron 
populations. 

(b) For those molecules which have been examined 
with both STO-3G and 6-31G* basis sets, the 
populations obtained by our method do not differ very 
much. The differences are much less than the dif- 
ferences between the corresponding Mulliken 
populations. This indicates that the real differences 
between the two functions (using different orbital 
bases) are really less than would be suggested by the 
wide variations in Mulliken populations. 

(c) The populations by density basis function 
analyses are generally closer to the Mulliken 
populations for the STO-3G orbital basis set than to 
the Mulliken populations for 6-31G*. This indicates 
that the high polarities implied by the Mulliken 
populations for extended orbital basis sets represent 
some lack of balance in the basis rather than real 
polarity in the full density function. 

(d) Many expected qualitative trends are shown by 
the populations using the standard density basis set. 
The H atoms in acetylene are found to be more positive 
than in the other simple hydrocarbons methane, ethane 
and ethylene. The series of bonds to hydrogen C - H ,  
N - H ,  O - H  and F - H  become increasingly polar. 

7. Conclusion 

The results described in this paper suggest that the 
technique of least-squares fitting of a density function 
to a small density basis set is a useful method of 
partitioning a total number of electrons into a set of 
well-defined populations. It is clear that inner-shell 
electrons have to be handled separately but, if this is 
done, the resulting valence-shell populations appear to 
reflect changes in atomic charge reasonably without 
too much detailed dependence on the orbital basis used. 

The standard density basis sets given here may be 
easily converted to X-ray form factors which can serve 
as a basis for electron population analysis of X-ray 
diffraction data. Several applications will be given in a 
separate paper. 
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The Projection of Molecular Charge Density into Spherical Atoms. 
II. An Application to X-ray Diffraction Data 
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Standard density basis functions for hydrogen and the first-row atoms have been converted to K-shell and L- 
shell scattering factors. With the K shell fixed at two electrons, these scattering factors have been used for 
atomic-charge analysis of X-ray structure factors by the method of least squares. Results for cyanuric acid 
and uracil are given. The net charges for these cyclic amides are in reasonable agreement. It is recommended 
that scattering factors here be used for atomic-charge analysis of first-row atoms in routine structure refine- 
ments of chemically related molecular crystals. 

Introduction 

In the previous paper (Yfifiez, Stewart & Pople, 1978), 
a set of atomic-density basis functions for first-row 
atoms were developed for a population analysis of 
molecular charge densities. These functions can be 
transformed into suitable scattering factors so that X- 
ray structure factors may be analyzed for atomic 
charges by the L-shell projection method (Stewart, 
1970; Coppens, Pautler & Griffin, 1971). 

We report below application of these form factors to 
atomic charge analysis of cyanuric acid and uracil. 
These two molecular crystals are closely related 
chemically since they are cyclic amides. In the present 
work the scattering factors have not been scaled, 
although this variation could be easily incorporated 
into the least-squares equations. The spirit of the 
approach is to use standard density basis functions for 
an atomic population analysis of chemically related 
molecules. 

* Present address: Facultad de Ciencias, Universidad Autonoma, 
Madrid-34, Spain. 

Refinement model and X-ray scattering factors 

The atomic scattering factor is split into K-shell and L- 
shell functions for the first-row atoms. For the H atom, 
only a K-shell function is used. The outer shell is 
assigned a variable population parameter and the K 
shell is frozen with a charge content of two electrons. 
The structure factor model is 

N 
Fh = Z ~. [kfpK(S) 

s y m  p---- 1 

+ e ~ , ( s ) l  exp (antaa, xp) exp (--ks' ops) (1) 

where Pp, xp and Up are least-squares parameters for 
atom p and k is the overall scale factor. The charge of 
atom p is 

% =  2 + Pp/k. (2) 

In the least-squares fit of (1) to observed structure 
factors, the inhomogeneous terms for the solution of Po 
are, 

Iq = ~ WhF~hBsfqL(S) exp (--~StUp S) exp (--2m'htxp) (3) 


